Lesson 9.5: Chords

Objectives:

· Find the lengths of chords in a circle

· Find the measure of arcs in a circle
Standards:

MATH.CA.8-12.GEOM.1.0, MATH.CA.8-12.GEOM.2.0, MATH.CA.8-12.GEOM.7.0, MATH.CA.8-12.GEOM.16.0, MATH.CA.8-12.GEOM.21.0
MATH.NCTM.9-12.GEOM.1.1, MATH.NCTM.9-12.GEOM.1.3, MATH.NCTM.9-12.GEOM.4.1
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Chords are line segments whose endpoints are both on a circle. The figure shows an arc      and its related chord AB.
There are several theorems that relate to chords of a circle that we will discuss in the following sections.
09.5.1
Theorem 9-6


9-6
The perpendicular bisector of a chord is a diameter
Proof: 
We will draw two chords AB and CD such that AB is the perpendicular bisector of CD. 
We can see that 
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for any point O on chord AB.

The congruence of the triangles can be proven by the SAS postulate:
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This means that
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If O is the midpoint of AB then OC and OD are radii of the circle and AB is a diameter of the circle.
09.5.2
Theorem 9-7


9-7
A bisector perpendicular to a chord bisects the chord and its arc.

Proof: 

We can see that 
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because of the ASA postulate:
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This means that
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This completes the proof.
09.5.3
Theorem 9-8


9-8
Congruent chords are equidistant from the center
Proof: 
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by the SSS Postulate.
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Since the triangles are congruent, their altitudes must also be congruent: 
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. Therefore, the chords AE and BF are equidistant from the center.
09.5.4
Theorem 9-9


9-9
Chords equidistant from the center are congruent (converse of Theorem 9-8).
This proof is left as a homework exercise.
Next, we will solve a few examples that apply the theorems we discussed.

Example 1:  Chord CE is 12 in. long and 3 in. from the center of circle O. 
a. Find the radius of the circle. 

b. Find m     
Solution: 

Draw the radius OC.
a. OC is the hypotenuse of the right triangle
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OT = 3 in.; CT = 6 in.

Apply Pythagorean Theorem: 
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b. Extend line OD to intersect the circle at point D.

m       = 2 m       


m       = 
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m      = 
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Example 2: Two concentric circles have radii of 6 inches and 10 inches. A segment tangent to the smaller circle is a chord of the larger circle. What is the length of the segment?
Solution:
Start by drawing a figure that represents the problem


OC = 6 in.


OB = 10 in.
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is a right triangle because the radius OC of the smaller circle is perpendicular to the tangent AB at point C.

Apply Pythagorean Theorem:


[image: image19.wmf]in

BC

BC

BC

OC

OB

8

6

10

2

2

2

2

2

2

=

+

=

+

=



AB = 2BC from Theorem 9.6

Therefore, AB = 16 in.
Example 3: Find the length of the chord of the circle 
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 that is given by line y = -2x - 4.
Solution: 
We first draw a graph that represents the problem.
Find the intersection point of the circle and the line by substituting for y in the circle equation.
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We solve using the quadratic formula:

x = -0.52 or -2.68
The corresponding values of y are:

y = - 2.96 or 1.36

Thus, the intersection points are (-0.52, -2.96) and (-2.68, 1.36).

We can find the length of the chord by applying the distance formula:
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Example 4: 
Let A and B be the positive x-intercept and the positive y-intercept, respectively, of the circle x2 + y2 = 32. Let P and Q be the positive x-intercept and the positive y-intercept, respectively, of the circle x2 + y2 = 64. Verify that the ratio of chords AB :PQ is the same as the ratio of the corresponding diameters. What does this data suggest to you?

Solution:

For the circle x2 + y2 = 32,  the x-intercept is found by setting y = 0. So, 
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the y-intercept is found by setting x = 0. So, 
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Chord AB can be found using the distance formula: 
[image: image26.wmf]8

32

32

)

2

4

(

)

2

4

(

2

2

=

+

=

+

=

AB


For the circle x2 + y2 = 64,  
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Chord 
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The ratio of the chords AB :PQ = 8 : 
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Diameter of circle x2 + y2 = 32 is 
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Diameter of circle x2 + y2 = 64 is 16.

The ratio of the diameters is 
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The ratio of the chords and the ratio of the diameters are the same. We can conclude that the circles are similar.

Homework:

Find the value of x:
1. 


2.


3. 


4.



5.


6.


7.


8.


Find the measure of arc       .
9.


10.


11.


12.



13.


14.


15.


16.

17. Two concentric circles have radii of 3 inches and 8 inches. A segment tangent to the smaller circle is a chord of the larger circle. What is the length of the segment? 
18. Two congruent circles intersect at points A and B. Segment AB is a chord to both circles. If the line connecting the centers of the two circles measures 12 in and the chord AB measures 8 in, how long is a radius?

19. Find the length of the chord of the circle 
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 that is given by line y = x + 1.

20. Prove Theorem 9.9.
21. Sketch the circle whose equation is x2 + y2 = 16. Using the same system of coordinate axes, graph the line x + 2y = 4, which should intersect the circle twice — at A = (4, 0) and at another point B in the second quadrant. Find the coordinates of B. 
22. For Problem 21, find coordinates for a point C on the circle that makes chords AB and AC have equal length.
23. The line y = x + 1 intersects the circle x2 + y2 = 9 in two points. Call the third quadrant point A and the first-quadrant point B, and find their coordinates. Let D be the point where the line through A and the center of the circle intersects the circle again. Show that triangle BAD is a right triangle.
24. A circular playing field 100 meters in diameter has a straight path cutting across it. It is 25 meters from the center of the field to the closest point on this path. How long is the path?
Answers:

1. 12.53

2. 6.70

3. 14.83

4. 11.18
5. 16

6. 11.18

7. 16.48

8. 32


9. 136.4o

10. 120o

11. 60o

12. 118.07o
13. 115o

14. 61.92o
15. 146.8o
16. 142.5o
17. 14.83
18. 7.21

19. 7.88

20. proof

21. (-12/5, 16/5)

22. (-12/5, -16/5)

23.  B (1.56, 2.56); A (-2.56, -1.56); D (2.56, 1.56)






       AB2= 34; AD2=36; BD2= 2; AD2= AB2+ BD2
24. 86.6 meters
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